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ABSTRACT

Experiments are conducted in the Arizona State University Unsteady Wind Tunnel

with a zero-pressure-gradient flat-plate model that has a 67:1 elliptical leading edge.

Boundary-layer measurements are made of the streamwise fluctuating-velocity component

in order to identify the amplified T-S waves that are forced by downstream-travelling

sound waves. Measurements are taken with circular 3-D roughness elements placed at the

Branch I neutral stability point for the frequency under consideration, and then with the

roughness element downstream of Branch I. These roughness elements have a principal

chord dimension equal to 2ATS/r, of the T-S waves under study and are "stacked" in order

to resemble a Gaussian height distribution. Measurements taken just downstream of the

roughness (with leading-edge T-S waves, surface roughness T-S waves, instrumentation

sting vibrations and the Stokes wave subtracted) show the generation of 3-D T-S waves, but

not in the characteristic heart-shaped disturbance field predicted by 3-D asymptotic theory.

Maximum disturbance amplitudes are found on the roughness centerline. However, some

near-field characteristics predicted by numerical modelling are observed.
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NOMENCLATURE

C

D

F
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CHAPTER I

INTRODUCTION

Since the pivotal Schubauer and Skramstad experiments (1947a,b), much progress has

been made toward understanding the instabilities which cause boundary-layer transition.

Despite the continuous efforts of experimentalists and theorists, more research will be

necessary before the causes and exact roles of these instabilities are fully understood.

Linear stability theory and its extension to nonparallel boundary layers very closely predicts

the effect of a disturbance in the boundary layer, but the question of reasonable initial

conditions remains difficult in experiments. The present challenge is in identifying the

mechanism by which freestream disturbances are transmitted into the boundary layer and

then quantifying the effect of a given "receptivity mechanism".

1.1. Boundary-Layer Stability

The development of viscous stability theory has been an interesting chapter in the

science of fluid dynamics. It is one of the few disciplines in which a theory was developed

without experimental evidence and later verified through testing.

1.1.1. Tollmien-Schlichting Instability Waves

At G6ttingen, Prandtl (1928) examined the effect of a sinusoidal disturbance on a

viscous boundary layer. This was the first published explanation of a viscous instability

mechanism. Before this time, inviscid stability theory predicted stability for a flat-plate



-\

2

boundary layer. Prandtl's analysis was not well received, largely due to a lack of experi-

mental evidence. Scientists were reluctant to believe that a theory which predicted stability

in the inviscid limit would counter-intuitively lead to instability when a small amount of

viscosity was taken into account. However, the concept was reinforced when Tollmien

(1931) presented an asymptotic viscous stability theory for a Blasius boundary layer, and

Schlichting (1933, 1935) calculated part of the neutral stability curve. Still, not until 1943

was the theory validated by experiment.

At the National Bureau of Standards, with the support of Hugh Dryden, Schubauer

and Skramstad built a low-turbulence wind tunnel and conducted experiments to to in-

vestigate laminar boundary-layer oscillations and transition on a fiat plate. The instability

waves found co:'responded with those predicted by asymptotic viscous stabLlity theory.

The following passage from Schubauer and Skramstad's published results (1947a), after

declassification of the work, shows even the experimenters' surprise at their success.

When these experiments were being performed, each check with theory was

a stimulating experience. There was nothing so unusual about setting up a

wavy disturbance in the boundary layer, but finding that this waviness really

constituted a unique wave phenomenon with properties determined by the

boundary-layer flow was out of the ordinary.

Schubauer and Skramstad's experiments removed all doubt from the basic validity of

viscous stability theory. The new question raised was how the instability waves originated

in the boundary layer.
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"Receptivity" is the term used to describe the mechanism by which freestream distur-

bances enter the boundary layer and generate unstable waves (Morkovin, 1969). Examples

of receptors in a flat-plate boundary layer include leading-edge curvature, the leading-edge

juncture with the plate, surface roughness elements, and suction or blowing. Indeed, any

surface inhomogeneity or mechanism causing short-length-scale, localized pressure _adi-

ents in the boundary layer has the potential to entrain freestream disturbances and act as a

receptivity mechanism (Nishioka & Morkovin, 1986).

Identifying and quantifying all sources of boundary-layer receptivity is a challenging

task. Most receptivity experiments attempt to carefully control the environment and limit

the study to one receptivity mechanism, often designed to excite T-S waves at a particular

frequency in a Blasius boundary-layer. Freestream disturbances may be introduced via

acoustic waves or convected gusts. Another common approach is to bypass the receptivity

mechanism and initiate the disturbance directly in the boundary layer to examine the

development and effects of the unstable waves generated. This may be accomplished with

a vibrating ribbon or pulsed or harmonic acoustic source within the boundary layer.

Experiments involving receptivity to freestream sound must be approached cautiously.

Nishioka and Morkovin (1986) point out several common problems with past experiments

which should be avoided. Often the acoustic field outside the boundary layer is not

sufficiently documented, including any standing waves and the forcing field at the boundary

layer's edge. Also, freestream disturbance amplitudes should be limited to maintain
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linearityof theforcingfield, andanyvibrationof theleadingedgeshouldbenoted.Within

theboundarylayer, theeffectof theforcing shouldbefully documented.Additionally,

it is importantthatfreestreamturbulencelevelsarevery low, that aslittle receptivityas

possibleis providedby themodelleadingedge,andthatsurfaceroughnessis minimized,

sinceall of these factors contribute to boundary-layer receptivity (Saric, 1990).

1.13. Transition Control

While the experiments associated with boundary-layer receptivity may be tedious,

the rewards to be gained from understanding the mechanisms are significant. Simply

being able to accurately predict the transition location on an airplane wing would be an

accomplishment. If the mechanisms which cause transition are correctly identified, the

control of transition becomes an intriguing possibility. Delayed transition decreases skin-

friction drag while early transition may be desirable to maintain boundary-layer attachment.

The field of Laminar Flow Control (LFC) examines the effect of devices such as suction

slots near a wing leading edge to limit growth of disturbances in the boundary.layer and

delay transition. Another approach in transition control involves creation of T-S instability

waves (using applied surface roughness, for example) designed to interfere with existing

T-S waves from the leading edge or surface roughness. Cancellation or amplification from

superposition of the instability waves is possible using this technique.

1.2. Experimental and Theoretical Review

The following is a summary of relevant receptivity experiments conducted on a Blasius

boundary layer. Discussion of some theoretical and computational results is also given, but



theemphasisis experimental.Includedareeffectsof freestreamturbulence,leading-edge

curvatureandjuncture,two-dimensional(2-D) disturbances,andthree-dimensional(3-D)

disturbanceswith forcingprovidedby freestreamsoundor vorticaldisturbances.

1.2.1. Freestream Turbulence

Freestream disturbances provide the perturbation necessary to instigate Blasiu s boundary-

layer instability. In order to determine the physical mechanism by which this occurs and

to quantify the forcing and response amplitudes, it is desirable to have a known freestream

disturbance. This is generally accomplished by performing boundary-layer stability mea-

surements in a low-turbulence environment, and then introducing a "known disturbance via

freestream sound waves, convected periodic gusts or vortical disturbances.

Care must be taken when measuring natural freestream turbulence levels in a wind

tunnel. It is important to cite both disturbance amplitudes and the frequency range of

the signal filtering (Saric, Takagi, & Mousseux, 1988). Long-wavelength freestream

disturbances are frequently modelled using acoustic waves. A relatively new technique for

introducing freestream disturbances is the generation of periodic gusts using an oscillating

ribbon array (Parekh, Pulvin, & Wlezien, 1991). The disturbance created by the oscillating

array resembles a sinusoidal wake and is generated at a single wave number.

Recent freestream turbulence experiments by Kendall (1985, 1990) emphasize the need

for a well-known disturbance field. Kendall used a grid to create freestream turbulence

and in one instance found that streamwise vortical disturbances created by the grid were

ingested into the boundary layer. In that case, T-S wave instability was dominated by the
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streamwisevorticity in theboundarylayer.At lowerlevelsof freestrearnturbulence,when

the T-S instability dominated,theamplitudesof the T-S waveswere found to increase

nonlinearlywith amplitudesof freestrEarnturbulence.Oneconcludesthatrelativelylow

levelsof freestreamdisturbancesarerequiredfor receptivityexperiments.

1.2.2. Leading-Edge Receptivity

Acoustic receptivity at the leading edge of a fiat-plate model can occur for two reasons:

from curvature of the leading edge and from the juncture between the leading edge and

fiat plate. (The juncture acts as a 2-D disturbance and will be discussed in the following

section.) Goldstein (1983) presents the theoretical mechanism by which long-wavelength

freestream disturbances are transformed to short-wavelength T-S waves due to the leading-

edge curvature. The conversion takes place in the overlap region where the unsteady

boundary-layer equations governing at the leading edge join the Orr-Sommerfeld solution

governing on the fiat plate. The method of matched asymptotic expansions is used to

match boundary conditions here, and this matching provides the proper length Scales for

the wavelength conversion to take place. Goldstein, Sockol, and Sanz (1983) additionally

computed matching coefficients in support of this theory. More recently, Kerschen extends

this theory to include leading-edge receptivity of a fiat plate in a channel to acoustic waves

and leading-edge receptivity to convected gusts (1989).

Several attempts have been made to numerically model leading-edge curvature recep-

tivity to acoustic waves, but only the most recent from Lin, Reed, and Saric (1991) includes

a non-zero fiat-plate thick.ness. Lin, et al., solve the full Navier-Stokes equations in general
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curvilinear coordinates using a finite-difference method which is second-order accurate in

time and space. Less receptivity is detected from larger aspect ratio elliptic leading edges,

and smoothing the leading-edge juncture is found to decrease receptivity. A super ellipse

configuration, with no curvature discontinuity at the juncture, is also examined.

The receptivity experiments of Wlezien (1989) and Wlezien, Pare'Ida, and Island (1990),

used elliptic leading edges with aspect ratios of 6:1 and 24:1. It was noted that significantly

less leading-edge receptivity was observed from the 24:1 ellipse for the case of acoustic

freestream disturbances. Parekh, Pulvin, and Wlezien (1991) examined leading-edge

receptivity to convected gusts. For a gust incidence angle of zero degrees, parallel with

the flat-plate leading edge, no T-S response was detected. However, future experiments

are planned for nonzero gust incidence angle, which theoretically should produce a larger

T-S response. It should be noted that T-S waves generated by leading-edge curvature have

more time to decay before reaching the neutral stability location than T-S waves generated

by a leading-edge juncture. Therefore, the latter are often found to be more significant in

receptivity experiments.

1.23. Receptivity to 2-D Disturbances

The amplitudes of unstable T-S waves predicted by leading-edge curvature theory are

often not large enough to explain the measurements of T-S waves downstream of leading-

edge regions in experiments. This was noted by Goldstein (1985) when comparing his 1983

computations to the leading-edge receptivity experiments of Leehey and Shapiro (1980).

T-S waves due to leading-edge curvature usually have the opportunity to decay significantly
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beforereachingthestreamwisepositioncorrespondingto BranchI of theneutralstability

curve,sincethelargestcurvaturechangesoccurcloserto thenosethantheleading-edge-

flat-platejuncture. Howeverany instability wavesarising from discontinuitiesat the

leading-edgejuncturearegenerallycloser to the vicinity of the neutralstability point

(beyondwhichdisturbancesgrowdownstream).Therefore,small-scaledisturb,'mcesnear

theneutralstabilitypoint havethepotentialto producelarge-amplitudeinstabilitywaves

in theboundarylayer.

Goldstein's1985paperanalyzestheeffectof a2-D surface-curvatureinhomogeneity

asareceptivitymechanismin aBlasiusboundarylayer.Heusesatriple-decktheorycom-

posedof threeregions:anupperdeckdescribingtheinviscid flow outsidetheboundary

layer;amaindeckgovernedto firstorderbyBlasiusboundary-layerequations;andalower

viscousdeckusingunsteadyboundary-layerequationsin thevicinity of thedisturbance.

This triple-deckstructureprovidestheappropriatelengthscalesbywhichlong-wavelength

disturbancesin the inviscidregioninteractwith thesmall-length-scalecurvatureinhomo-

geneityto produceshort-wavelengthT-Swaves.

A complementaryviewof themechanismcontendsthatstreamwiseandnormalvarying

pressuregradientsin thefreestreamforcingamplitudeareresponsiblefor theevolutionof

theunstableT-Swavesin theboundarylayer(Nishioka& Morkovin, 1986).Additionally,

Kerschen(1989) and Kerschen,Choudhari,and Heinrich (1989) have appliedtriple-

deckanalysisto severalspecificexamplesof 2-D disturbances,includingsuctionstrips



andporoussurfaces.

analyzed.

Receptivityto bothacousticwavesandconvectedgustshasbeen

Receptivityexperimentsinvolving 2-D disturbanceshavebeenperformedby a num-

berof researchers.Aizin andPolyakov(1979)at Novosibirskinvestigatedreceptivity

of 12-mm-wide,12-17-_m-thinmylar stripsto upstream-propagatingsoundwavesusing

a 60:1elliptic leadingedge. Theyexaminedthecombinationof theStokes-layersignal

andspatiallygrowingT-Ssignalcomponents.NishiokaandMorkovin (1986)designed

experimentsat theIllinois Instituteof Technologyto examinetheir spatially-varyingpres-

suregradienttheoryof receptivity.A Blasiusboundarylayeron awall wasexposedto a

weak,harmonicpressure-sourcelocatednormalto thewall. Nearfield disturbancesignal

amplitudesandphasesweremeasureddownstreamalong thecenterlineof thepressure

sourcein orderto gain insightinto theinitial stagesof receptivity.

Blasiusboundary-layerreceptivitydueto 2-D roughnessstripslocatedat theneutral

stabilitypoint wasexaminedin a seriesof testsat Arizona State University. (See Hoos,

1990; Saric, Hoos & Kohama, 1990; and Saric, Hoos & Radeztsky, 1991.) The experiments

were conducted using a 67:1 elliptical leading edge, downstream travelling planar sound

waves, and 25-mm-wide, 40-/.zm-thin roughness strips. Measured T-S wave amplitudes

corresponded closely with theoretical predictions. In addition, the stacking of strips

produced a linear increase in maximum T-S amplitude until the height of the 2-D roughness

element exceeded the height of the lower viscous deck. Also, it was found that the location
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of theroughnessstrip couldbe finely adjustedin thestreamwisedirectionto "tune" and

"detune"theT-Sresponse.

Another seriesof experiments,sponsoredby McDonnellDouglasat NASA Ames,

investigatedreceptivitydueto opensuctionslotsandporoussuctionslots. (SeeWlezien,

1989,andWlezien,Parekh,& Island,1990.)Soundwasinjectednormalto thefiat-plate

surface,and the0.1-mmopensuctionslot and7-mm porousslot were both locatedat

BranchI on aflat platewith a 6:1 elliptic leadingedge.Receptivitydueto theslotswas

observedfor boththeno-suctionandweak-suctioncases,howeverthereceptivityfromthe

leadingedgewason thesameorderof magnitudeasthereceptivityfrom theslots,dueto

thelow-aspect-ratioleadingedgeandfreestreamturbulence.A 24:1elliptic leadingedge

waslatermachinedto investigatea 19-ramperforatedstrip in thesurfaceof theflat plate.

Leading-edgereceptivitylevelswerereducedandreceptivityto theperforatedstripwas

demonstrated.In addition,theexperimentspresenta seriesof techniquesfor separating

theacousticforcingandT-Sresponsesignalsin theboundarylayer.

Parekh,Pulvin, andWlezien (1991)investigatedreceptivity to a spatiallyperiodic

freestreamdisturbanceoriginatingfrom anarrayof oscillatingribbonsandimpingingon

a 24:1elliptic leadingedgeof a flat-platemodel.A 0.1l-ram forward-facingstepwasthe

2-D receptorin theboundarylayer.NoT-Swaveswereidentifiedasoriginatingfrom the

leadingedgeor thestep.Futureexperimentalplansincludechangingtheincidenceangle

of thegustin orderto maximizereceptivityaspredictedby linear theory.
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Two-dimensionalroughnessstripswere usedby KosoryginandPolyakov(1990)at

Novosibirskto destructivelyinterferewith T-Swavesdueto leading-edgecurvature.A

semi-circularleadingedgeprovidedsignificantT-Sreceptivityto acousticforcing,andby

carefullypositioninga thin 2-D roughnessstrip nearthe neutralstabilitypoint, destruc-

tive interferencereducedthetotal T-Samplitudebelowthatof the leading-edge-induced

T-S level. This experiment was repeated at Arizona State University using a 40-#m-thin

2-D roughness strip to demonstrate both destructive and constructive interference of the

roughness-induced and leading-edge-induced T-S wave amplitudes. (Radeztsky, Kosory-

gin & Saric, 1991)

1,2.4. Receptivity to 3-D Disturbances

Choudhari and Kerschen (1990) examined the theorefcal case of acoustic receptivity

to 3-D inhomogeneities including a suction region, change in wall admittance, and the

presence of a wall "hump". An asymptotic, high-Reynolds-number, triple-deck analysis

was used to predict the downstream disturbance field. It was found to depend on nondi-

mensional forcing frequency, incidence angle of the acoustic forcing, and geometry of the

surface inhomogeneity. For certain ranges of nondimensional forcing frequency, they de-

termined that the most unstable waves were oblique and caused the maximum disturbance

amplitudes to deviate from the purely downstream direction. Computations for the case

of a 3-D roughness element subject to acoustic forcing have been performed by Tadjfar

(1990). His results confirm this maximum disiurbance amplitude shift from the down-
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(For moredetailson these,seeSections2.1.

An interestingvariationonthetraditionaltechniqueof excitingasinglefrequencyin the

boundarylayeris foundin theexperimentbyGasterandGrant(1975).3-Dacousticpulses

wereinjectedinto theboundarylayerfrom asmallorificein aflat plate,andmeasurements

weremadeof thestreamwiseandspanwisevariationof theresultingwavepacket.Dueto

theimpulsivenatureof thedisturbance,awidebandof T-Sfrequenciesis excited.It was

found thatthewavepacketsdisplayedamaximumfluctuationvelocity on the centerline

of thepacketfor asignificantstreamwisedistance.However,far downstream,thepackets

distortedsuchthatthemaximumstreamwisefluctuationvelocitieswerefoundoff thecen-

terline. GasterandGrantexaminedpowerspectraanddeterminedthattheseoff-centerline

maximawereduetothelargegrowthratesof obliquewaveswhichdevelopeddownstream

of thepulseorigin. Theyattributedthewavepacketdistortionto nonlineareffectsfrom

theserapidlygrowingobliquewavesbut alsorecommendedfurthermeasurementsin an

environmentwith lower turbulence.Theresultsfrom this experimentareconsistentwith

therecentpredictionsof obliquelytravelling3-DT-Swavesarisingfrom a3-Ddisturbance

in theboundarylayer.

Russianexperimentershavealsoexamined3-Dacousticsourcesin aBlasiusboundary

layer. Gilev andKozlov (1980)investigated3-D wavepacketsfrom apulsedacoustic

source,muchlike GasterandGrant.TheyfoundthatT-Samplitudeson thecenterlineof

theacousticsourcedecreasedfar downstreamof thepulseorigin, asis expectedif more
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unstable,obliquely-growing3-DT-Swavesaredeveloping. In addition, they compared

2-D and 3-D T-S waves on the centerline of acoustic sources and found that the 3-D

maximum T-S amplitude occurs farther from the flat-plate surface and that the second u'

maximum in 3-D T-S waves is smaller than that for 2-D T-S waves.

Gilev, Kachanov, and Kozlov (1981) and Kachanov (1984) investigated harmonic

acoustic waves injected through a small hole in a flat-plate model. Contours of constant

disturbance signal amplitude and phase in the z-z plane are presented and display the

heart-shaped disturbance field predicted by 3-D theory. Also, Fourier analysis was used

to identify the obliquely travelling waves responsible for the disturbance field shape. At

higher forcing frequencies, they determined that the 3-D disturbance field loses its lobed

appearance and becomes 2-D in nature.

Mack and Kendall (1983) and Mack (1984) compared results from their experiments

using a harmonic acoustic source in a Blasius boundary layer to numeric integration

and an asymptotic analysis applied to the problem. With a correction factor applied to

compensate for boundary-layer growth, good agreement was found for centerline amplitude

measurements and calculations. However, off-centerline amplitude predictions from both

numeric integration and asymptotic analysis are less reliable.

1.3. Experiment Objectives

The purpose of the current experiments is to provide insight into the acoustic receptivity

of a Blasius boundary layer due to an applied 3-D roughness element. The experiments
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aredesignedto allow comparisonwith both the theoreticalanalysisof Choudhariand

Kerschen(1990)andthenumericalmodellingbyTadjfar(1990).

The Arizona State University Unsteady Wind Tunnel is a low-speed, low-turbulence

facility designed for receptivity experiments. Both the fan motor and test section are

mounted on concrete slabs isolated from the rest of the building. The planar sound

field created by the downstream-propagating acoustic waves has been investigated and

documented (Saric, Hoos & Kohama, 1990). The model is a flat plate with a near-mirror

finish and a 67:1 elliptical leading edge to minimize surface roughness and leading-edge

curvature receptivity. In addition, the leading-edge juncture has been wet-sanded and

polished by hand to reduce juncture-induced receptivity.

The roughness element chosen for study roughly approximates the Gaussian distri-

bution investigated by Choudhari, Kerschen and Tadjfar. Its maximum height is on the

order of the lower viscous deck of triple-deck theory. The three-dimensionality of the

disturbance field downstream of the element is documented with streamwise fluctuating-

velocity measurements. The data collected from these experiments primarily characterize

the near-field response of the 3-D roughness element.

A secondary objective of these experiments is to gain experience in separating the

extremely small amplitude of the roughness element T-S response from the "background"

signal. This background signal can include components due to the acoustic forcing, leading-

edge curvature and juncture receptivity, surface roughness receptivity, environmental dis-

turbances, instrumentation sting vibrations, etc. The signal separation is achieved by
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directly measuring the background signal and subtracting it (in the complex plane) from

the total signal in the roughness disturbance field.



CHAPTER II

THEORY

Most receptivity theory, computations, and experiments to date have focussed on quan-

tifying the effects of 2-D disturbances on the production of 2-D instability waves. For the

3-D roughness elements under consideration here, 3-D instability waves are generated, and

a 3-D theory or numerical analysis is required to predict the disturbar_ce flow characteris-

tics. A main objective of this research is to provide experimental evidence in support of

the 3-D stability theory developed by Choudhari and Kerschen (1990) and the numerical

model by Tadjfar (1990). Specifically, the following sections address the effect of a single

3-D surface roughness element on a Blasius boundary layer under the influence of acoustic

freestream forcing.

2.1. Three-Dimensional Stability Theory

Choudhari and Kerschen (1990) predict instability wave characteristics for a variety

of 3-D disturbances, including local wall inhomogeneities of suction, admittance, and

height. They use an asymptotic, high-Reynolds-number, triple-deck structure to analyze

the flow parameters. A saddle-point method is used to examine the instability wave pattern

downstream of the 3-D disturbance.

Triple-deck theory may be used to describe the reaction of a flat-plate boundary layer

to a small-scale disturbance on the surface. See Figure 2.1. The total flow over the plate

may be classified in three regimes. An "upper deck" pertains to the inviscid, irrotafional

flow outside the boundary layer. The "main deck" is the inviscid, rotational part of the
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boundarylayergovernedby theBlasiusboundary-layerequations,andthe"lower deck"is

theviscous,rotationalportionof theboundarylayergovernedby theunsteadyboundary-

layerequations.The3-D disturbanceresidesin thelowerdeck.Boundaryconditionsare

matchedasymptoticallyin thelargeReynoldsnumberlimit attheedgesof thedecks.The

lowerdeckis scaledby e-5 whereeis givenby:

1

= (1)

Uo_ is freestream velocity, u is kinematic viscosity, and x" is the chordwise coordinate

measured from the virtual leading edge. (Dimensional quantities are referred to with the

superscript ..... .) The main deck is scaled by e-4, and the upper deck is scaled by e-3.

Choudhari and Kerschen examine a local wall inhomogeneity of height, a 3-D "hump".

The theoretical hump is modelled by a Gaussian roughness distribution,

(_4:h
h = H exp _ D2 ]

(2)

where roughness height h is determined as a function of radius r, maximum height H and

diameter D. Additionally, humps of different aspect ratios are investigated. Freestream

forcing is chosen to be time harmonic with a wavelength on the order of sound waves.

Planar waves, propagating both parallel to the surface and at an oblique angle are examined.

A 3-D roughness eiement is found to excite 3-D instability waves in a symmetric,

wedge-shaped region downstream of the roughness. From a saddle-point analysis of the
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instability wavepattern,threedistinct wedgeshapesarepredictedfor threerangesof

nondimensionalfrequency,s:

S _ £2 tO*Z=

uoo (3)

For low values of s, on the order of 0.44, the fluctuation-velocity growth rate on the rough-

ness centerline is zero. The disturbance field develops a bi-lobed appearance, as shown

in Figure 2.2. For mid-frequency ranges, s _ 0.88, the maximum fluctuation-velocity

growth occurs up to -4-13° from the streamwise direction.

growth is less than along these 13 ° rays, but is nonzero.

The streamwise disturbance

The obliquely-travelling 3-D

T-S waves are the most unstable, producing a "heart-shaped" disturbance field, as may

also be seen in Figure 2.2. For high frequencies, s _ 1.38, the maximum fluctuation-

velocity growth is directly in the downstream direction. There is no lobed appearance of

the disturbance field. This is due to the most unstable waves being almost 2-D at this high

frequency.

Receptivity levels for each of these three nondimensional frequency ranges are gov-

erned by the aspect ratio of the 3-D roughness element and by the angle of incidence of

the acoustic forcing waves. For low frequencies s, a roughness element elongated in the

streamwise direction provides increased receptivity. Also, receptivity may be increased by

nearly normal-propagating acoustic waves. Conversely, at high frequencies s, receptivity

is improved with roughness elements elongated in the spanwise direction and streamwise-

propagating acoustic waves. For the mid-frequency range targeted in these experiments,

a circular roughness element is the best choice. Receptivity is optimized when roughness



element diameter, D, is set to

19

D- 2ATS
(4)

where Ays is the T-S wavelength. Acoustic forcing at a slightly oblique angle also improves

receptivity for mid-range nondimensional frequencies.

2.2. Three-Dimensional Stability Computations

Numerical work in the field of 3-D instability waves generated by a 3-D wall inho-

mogeneity, subject to acoustic freestream forcing, is provided by Tadjfar (1990). High

Reynolds number, asymptotic, triple-deck theory is used to analyze the flow, and the 3-D

roughness element is modelled with a Gaussian distribution as by Choudhari and Kerschen

(1990). The steady basic-state flow is governed by the nonlinear triple-deck equations, and

the disturbance flow is governed by the unsteady, linearized, 3-D triple-deck equations,

both of which are solved numerically.

The governing parameter in Tadjfar's computations is a scaled Strouhal number, So:

so= (5)

where e is given in equation (1), A is the slope of the Blasius profile at the surface, and S

is Strouhal number:

S

Of'_"

uoo (6)
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A critical value of So = 2.29 is given as the threshold for growing or decaying disturbance

amplitudes (this value of So is equal to Choudhari and Kerschen's (1990) s = 0.44) and

corresponds to Branch I of the neutral stability curve. For So less than 2.29, disturbances

decay, and conversely disturbances corresponding to So larger than 2.29 grow downstream.

Tadjfar's numerical model is in some ways similar to Choudhari and Kerschen's asymp-

totic theory. Both predict a heart-shaped disturbance wedge characteristic, but Tadjfar's

computations display such a wedge pattern only several roughness diameters downstream

of the 3-D roughness element. This is in agreement with the earlier 3-D wave packet

experiment done by Gaster and Grant (1975). In addition, Tadjfar's computations do

not display the three wedge characters listed by Choudhari and Kerschen for different

frequency ranges. All results presented for streamwise growing disturbances predict the

heart-shaped pattern with a nonzero growth rate on the downstream centerline.

Tadjfar's computations also display an interesting near-field feature of the disturbance

wedge not predicted by the asymptotic theory of Choudhari and Kerschen. Prior to

development of the heart-shaped wedge, maximum fluctuation-velocity amplitudes lie

purely in the streamwise direction. In the downstream direction, the fluctuation-velocity

amplitude increases for several roughness radii and then begins to decrease just prior to its

deviation from a purely streamwise direction (the development of the symmetric wedge

lobes). This phenomenon is shown in Figure 6.19, a mapping of the streamwise disturbance

velocity amplitude in the z-z plane. (z and z are scaled by the roughness radius, D/2.)
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2.3. Experimental Deviations from Theory

A primary focus of this research is to map the disturbance field downstream of a

3-D roughness element and to capture the heart-shaped wedge characteristic predicted by

Choudhari and Kerschen (1990) and Tadjfar (1990). The experiment is designed to fall into

the medium frequency range outlined by Choudhari and Kerschen. However, experimental

work by nature is difficult to exactly mold into a particular theoretic.al or computational

case. Inevitably differences will exist between the purely mathematical world and the tests.

The major source of difference in this experiment is the 3-D roughness shape. Gaussian

"humps" with a maximum height much less than a millimeter arc difficult to design

from laboratory materials. The Gaussian roughness distribution in these experiments was

modelled by stacked circular roughness elements. Six layers of a 3-M low-tack-adhesive

tape were piled for a total roughness height of 240 #m. Two cach of three different

diameters were used, as shown in Figure 2.3. A comparison of this design with a true

Gaussian distribution is given in Figure 2.4. The cxpectexi result of this discrepancy is

excitation of a finite number of 3-D T-S modes rathcr than an infinity of modes.



CHAPTER ]XI

EXPERIMENTAL FACILITY AND EQUIPMENT

To perform sensitive receptivity experiments, it is necessary to work in a carefully

controlled environment and to use high-quality signal conditioning equipment. A guide to

basic requirements in receptivity experiments is provided by Saric (1990). Drawings of

the ASU Unsteady Wind Tunnel are shown in Figure 3.1. For a detailed description of the

wind tunnel, flat-plate model, and 3-D traversing system, see Appendix A.

3.1. Sound System

Sound waves are introduced in the plenum upstream of seven screens and aluminum

honeycomb. See F:igure 3.2. To avoid blockage and flow disruption, the rectangular box

containing the speaker is mounted outside the tunnel. The speaker face protrudes through

a hole in the tunnel wall such that it is flush with the inside of the tunnel. In this manner,

downstream-travelling sound waves are planar in the y- and z-directions, and are normal

to the flat-plate leading edge.

The speaker is an 8-ohm Fosgate 254-mm woofer. An Adcom twin stereo amplifier

drives the speaker, and input to the amplifier is provided by a Model SD1041-5 Sweep

Oscillator. The speaker is rated at 225 watts, but when operated at a single frequency

the power output is limited to 100 watts, producing a freestream acoustic disturbance of

approximately [u'[ = 0.015, or 95 dB.
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A 3-M low-tack-adhesive polyester tape was chosen for the applied roughness elements.

The tape adheres securely to the aluminum su:'face, yet is easy to remove without marring

the fiat-plate model. No residue is left behind after removing the tape. The tape has a

uniform thickness, including the adhesive backing, of 40 pm and a width of 25.4 mm.

In addition, it is the material used in standard 2-D roughness experiments at the ASU

Unsteady Wind Tunnel (Hoos, 1990).

A disadvantage of choosing tape for the roughness elements is that the elements can

not be reused. The layers are cut by hand with a razor blade to ensure that edges remain

completely smooth. After application, the element is pressed firmly to the surface, and

during removal layer edges become rough. Therefore, some uniformity in layer diameters

is sacrificed to maintain uniform roughness thickness. This was deemed a necessity, after

detecting vorticity caused by roughened tape edges resulting from a tool used for cutting

and reapplication of the elements.

3.3. Freestream Control

Freestream tunnel conditions are continuously monitored by an in-house-written code

running on a dedicated personal computer. The computer samples temperature, static and

dynamic pressures and calculates test section speed and chord Reynolds number. The code

has been nicknamed "cruise control" for the tunnel because it also is used to control tunnel

fan speed. The user specifies a particular dynamic pressure, speed, or chord Reynolds

number and the code uses a feedback loop to maintain a constant operating condition. An
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optionto holdfan speedconstantis usedfor theseexperimentsto avoidanyunsteadyflow

characteristics.

Testsectiontemperatureismeasuredby athermistorbuilt andcalibratedbyDr. Shohei

Takagi. Staticanddynamicpressuresaremeasuredby a pitot probeconnectedto two

MKS type 390HA-0100SP05temperature-compensatedtransducers,1000and 10 tort,

respectively.Thepressuresignalsaremonitoredby two 14-bit,MKS Type270B Signal

Conditioners.

3.4. SignalAnalysisEquipment

Mean flow and fluctuationvelocitiesaremeasuredin the freestreamand boundary

layerusingtwo hot-wireprobes. Five-microntungstenwire is usedon bothhot-wires.

DISA hot-wireanemometryequipmentincludestwo eachof aMain Unit #55M01,Power

Pack#55M05, and Constant-TemperatureAnemometer(CTA) Bridge #55M10. CTA

bridgeourputsignalsaremonitoredby twoFluke8050ADistal Multimetersandacquired

directlyfor boundary-layerandfreestreammeanflow measurements.

The fluctuationcomponentsof the CTA bridgeoutputsignalsareremovedfrom the

DC signal,filtered,andamplified by a StewartVBF44 DualTwo ChannelFilter. The

Stewartfiltershaveexcellentattenuationcharacteristics,withaslopeof 135dBperoctave.

In addition,active filter control is implementedthroughan RS-232interfacewith the

Concurrent(Masscomp)5600Data-Acquisitionsystem.Thefluctuationsignalsarethen

monitoredusinga TekzronixEightChannelOscilloscope,Models#5440,#5A14N,and
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#5B42. Again, beforebeingacquired,thesignalsaremonitoredby two Fluke 8050A

DigitalMultimeters.

CTA Bridge output signalphaseandmagnitudeis measuredby a StanfordLock-

In Amplifier, Model #SR530. The track.ingsignalfor the lock-in amplifier is provided

by a Model SD1041-5SweepOscillator,the samedeviceprovidingthe speakerdriving

frequency.Thelock-in amplifieroutputof :t:9V for bothsignalmagnitudeandphaseis

reducedto 4-4.5 V by two resistor boxes, each containing two 50 k_ resistors. This is

necessary to make the output compatible with the 4-5 V limitation on the acquisition A/D

board.

All signals are connected to an eight channel in-house-built differential box. The

signals from the differential box are acquired by a 12-bit, 16 channel, 1 MHz, A/D board

in the primary data-acquisition computer, a Concurrent (Masscomp) 5600. All data are

acquired and analyzed in real time. Real-time data plots are displayed on a 19 inch, color,

1152 x 910 pixel monitor. For intensive data analysis and additional data storage two

DECstation 5000/200 computers are also used. These are equipped with magnetic tape

drives so that all data storage, and daily system backups are accomplished in-house. All

ASU Unsteady Wind Tunnel computers are networked via Ethernet on a sub-net with

one another and to the remainder of the university network. A Digital dot-matrix printer,

Hewlett Packard 7475A pen plotter, and Apple Laserwriter are used for hard copies.



CHAPTER IV

EXPERIMENTAL TECHNIQUES

Experimental parameters are chosen such that these tests correspond as closely as

possible to the cases outlined by Choudhari and Kerschen (1990) and Tadjfar (1990).

The extremely low-level disturbance-signal amplitudes which were encountered neces-

sitated the use of new techniques to decisively separate the effect of the 3-D roughness

element from the background signal. In addition, a scheme is developed to map the

three-dimensionality of the disturbance field downstream of the roughness element.

4.1. Scaling the Experiment

As detailed in Section 2.1., Choudhari and Kerschen (1990) predict that the charac-

teristics of the disturbance field just downstream of a 3-D inhomogeneity depend on the

value of a nondimensional forcing frequency, s. These experiments are scaled to produce

a roughly heart-shaped disturbance field resulting from mid-range values of s, on the order

of 0.88. Maximum disturbance-signal amplitudes are expected to lie off the centerline of

the roughness element by an angle of approximately 4-13 °.

The 3-D roughness element is composed of six circular layers of 40-#m-thin polyester

tape. It is designed to approximate the Gaussian roughness distribution examined by

Choudhari and Kerschen (1990) and Tadjfar (1990). (See Figures 2.3 and 2.4.) The 3-D

roughness element used in these experiments is not expected to excite an infinity of3-D T-S

modes as a Gaussian roughness distribution would. Since it is composed of three different

diameters of circular elements, it will excite only a finite number of T-S modes. This
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approximationis madedueto thedifficultiesassociatedwithconstructinga3-Droughness

elementwith totalheightof 240/zmandaGaussianroughnessdistribution.

A maximumroughnessdiameterof 25 mm is chosenbasedon restrictionsof the

roughnessmaterial.For optimumexcitationof the3-DT-Swaves,thissetsATSatr,D/2,

or 40 ram. Next, choosing a freestream velocity of 15 m/s, the following parameters

are specified by Branch I of the neutral stability curve: F = 55 x 10-6; R = 582;

k_ = 0.01; and z" = 383 mm. This z" corresponds to a position 110 mm downstream

of the leading-edge juncture. The F translates to a dimensional frequency f = 116 Hz.

This is sufficiently far from the instrumentation sting natural frequency of 75.8 Hz but

suspiciously close to the electrical line frequency, 120 Hz.

Operating the speaker this close to the line noise harmonic would not be possible

without exceptional filters. As described in Section 3.4., the Stewart filters have excellent

attenuation characteristics, with a slope of 135 dB per octave. In the freestream disturbance

signal, the line noise amplitude is 20 dB higher than the background signal noise. The

disturbance sound amplitude is 15 d.B higher than the line noise. In the boundary-layer

disturbance signal, the line noise exceeds the background by 10 dB and the sound amplitude

is 20 dB higher than the line noise. See Figures 4.1 and 4.2. These ratios are sufficiently

large to assure no line-noise contamination of the hot-wire signals.

Speaker sound pressure level is chosen in order to maximize disturbance-signal am-

plitudes. The speaker is driven at two voltages, 24 V and 28 V. These correspond to

a freestream lu'[ of 1.5 x 10 -4 and 1.7 x 10 -4, respectively. Sound pressure level is
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p'= pclz,'l (7)

pt

The speaker is operated at 93 and 95 dB to provide freestream disturbances.

The parameters outlined above yield a nondimensional frequency s = 0.78, where s

is given by (3). This is close to the mid-range s _ 0.88 suggested by Choudhari and

Kerschen (1990). Due to the small signal amplitudes encountered under these conditions,

the roughness was also moved 12D downstream of Branch I to a second location, z" =

688 mm. Changing only this parameter, the nondimensional frequency corresponding to

the second roughness position is s = 1.20. This falls between the mid- and high-frequency

ranges, with the latter at s ,._ 1.38. Note that all data are taken with U_ = 15 m/s and

F = 55 × 10 -6.

In order to keep the roughness element on the order of the lower viscous deck, the

roughness altitude is limited to 240/.tm. The lower viscous deck scaling variable, Y, is

given by:

y= _t_....__"
e5z. (9)

where _t" is the normal to the surface coordinate, z" is the chordwise coordinate measured

from the virtual leading edge, and the small scaling parameter e is given by (1). _ = 1.8

for the position z" = 383 mm and _ = 1.4 for the z* = 688 mm case.
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4.2. Roughness Signal Discrimination

Note that although the 3-D roughness element is placed at Branch I, measurements

are not taken at Branch II, where disturbance signals are most amplified. Irstead, the

disturbance field immediately downstream of the roughness element is investigated. It

is characterized by extremely small amplitudes, with a maximum on the order of zz' =

4 x 10 -4. The background signal level is also near this level, around 2 x 10 -4, and in

general the effect of the roughness element is not convincingly visible above the background

signal level.

This difficulty was also encountered by Wlezien, Parelda, and Island (1990) in their

experiments. They propose that this background signal is a Stokes wave produced by

the acoustic forcing of the boundary layer. Using the fact that the Stokes layer has a

wavelen_ on the order of the sound waves, several methods are suggested to separate

the long-wavelength Stokes component from the short-wavelength T-S component of the

signal.

One proposed method involves operating at an extremely low velocity, as low as it is

still possible to obtain an accurate hot-wire velocity calibration. In this manner, the Stokes

layer should dominate the T-S signal, and its magnitude may be measured directly. In

Figure 4.3, the data from a boundary-layer disturbance profile at U_ = 5 m/s are plotted

with the theoretical Stokes layer at these conditions. It is clear that even at this low velocity

other factors are contributing to the disturbance profile.
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A secondtechniquesuggestedbyWlezien,et. al.,involvesusingpolarplotsto separate

thelong-wavelengthacousticsignalcomponentfromtheshort-wavelengthT-Scomponent.

Disturbanceamplitudesandphasesaremeasuredat aseriesof pointsconstant in the _ and

z directions, but closely spaced over approximately a T-S wavelength in z. In this short

streamwise distance, the phase and magnitude of the long-wavelength acoustic component

vary only slightly, by 0a_ = 5 ° and AT's/Aa_ = 0.013, while the T-S phase makes a

360 ° circuit and its amplitude visibly increases. An algorithm is devised to determine

the "center" of the T-S wave "circle" from the polar plot. This center point defines the

magnitude and phase of the acoustic wave at a specific streamwise location and boundary-

layer position. Subtracting it in the complex plane from the total disturbance signal

should produce the T-S wave amplitude and phase. In order to map the acoustic signal

and the T-S wave throughout the boundary-layer thickness, it is necessary to repeat this

technique over a series of altitudes within the boundary layer. By applying the technique

to a series of boundary-layer disturbance profiles spaced over a T-S wavelength in the

streamwise direction, the Stokes layer and T-S wave over a streamwise increment may

be measured. Applying the technique to this experiment produced disappointing results.

There is tremendous scatter in the data, and a T-S wave is only vaguely decipherable from

the boundary-layer profiles.

Several factors are responsible for the failure of this intriguing technique in these

experiments. The first is large scatter, arising from extremely small signals. More funda-

mentally, the "total" signal measured has more components than just a roughness-element
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inducedT-Swaveandan acousticwave. It is known that the instrumentationsting is

notperfectlyvibration-free.At thesesignalmagnitudes,anyvibrationcomponenthasthe

potentialtobeaseriousproblem.Also,asevidentfromtheattempttodirectlymeasurethe

Stokeslayerata low velocity,"background"T-Swavesarepresent.Thesearepotentially

causedby theleading-edgecontourandjuncture,andby surfaceroughness.For these

reasons,theroughnessdiscriminationtechniquesproposedby Wlezien,et. al., werenot

sufficientfor theseexperiments.

An importantdifferencebetweentheexperimentsof Wlezien,et. al., andtheseis re-

movabilityof the3-Dinhomogeneity.Thetypesof inhomogeneiriesusedby Wlezienare

not aseasilyremovedas.thelow-tack-adhesivetapechosenfor this experiment.There-

fore, without specificallydeterminingthe componentsof the backgroundsignal, in this

experimentit is possibleto measureits amplitudeandphasedirectly by takingdatawith

theroughnesselementremoved.In thismanner,theconglomeratebackgroundsignalmay

be subtractedfrom thetotal signalin the complex plane yielding only the effect of the

3-D roughness element at every data point. See Figure 4.4. This technique eliminates the

Stokes layer, T-S waves from the leading edge, T-S waves from surface roughness, and

instrumentation sting vibrations.

Although scatter is not eliminated, the technique succeeds in convincingly discrimi-

nating the portion of the signal due to the applied 3-D roughness element from the total

disturbance signal. See Figure 4.5 for a verification of the technique using a 2-D rough-

ness strip placed at Branch I; data are taken at Branch II. The data are plotted with the
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theoretical,2-D T-Swaveamplitudeandphase.Figure4.6 showsa samplerun with the

3-D roughnesselement.The "*" data are u' magnitudes and phases with and without the

roughness element on the surface, while the "+" points are the subtracted signal, or the

effect of the 3-D roughness element only.

4.3. Three-Dimensional Disturbance Mapping

In order to investigate the roughness disturbance field in three dimensions, two types

of testing runs are used. The first is a spanwise traverse, beginning 30 mm in z" above the

roughness centerline and ending 30 mm below it. These scans are taken at a constant height

in the boundary layer and.at a constant streamwise position. Data are taken eve_ 1.5 mm

for a total of 41 points over the full 60 ram. Seven of these spanwise scans, or "z-scans",

are taken with the roughness at Branch I. The first five are taken at half-roughness-width

intervals, beginning one roughness width, D, downstream of the element's center. The

remaining two z-scans are taken 6D and 12D downstream of the roughness center. See

Figure 4.7 for Branch I testing locations.

The second type of measurement scheme used is a boundary-layer disturbance profile.

Profiles map the depth of the boundary layer at a particular spanwise and chordwise

position. The profile begins slightly outside the boundary layer and steps into the boundary

layer with progressively smaller steps, specified by:

(next step) = (lasl/step) x U (10)
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A typical initial step is 0.2 mm and a final step is 25/_m at U = 0.07. Profiles typically

include 40 points. At the Branch I roughness position, a series of six profiles are taken

at a streamwise location 2.5D downstream of the element's center. This series of profiles

begins on the roughness centerline and extends 30 mm in the negative z direction, with

each profile 6 mm apart. (See Figure 4.7.)

All measurements with the roughness element in the Branch I position are taken at a

,_qPL = 93 dB. In an attempt to increase signal magnitudes, data are also taken with the

roughness 12D downstream of Branch I. At this location, all measurements are taken at

both the 93 and 95 dB sound pressure levels. Sixty-millimeter z-scans are taken 1.5D,

2.5D, and 3.5D downstream of the element's center. Six profiles are again taken at 6 mm

intervals on the 2.5D-downstream z-scan. Figure 4.8 shows downstream testing locations.



CHAPTER V

DATA ACQUISITION

Standardcodesin useattheASU UnsteadyWindTunnelwereusedintactor modified

for thisproject. All codeswerewritten in C. Of interestis theuseof temperaturecom-

pensationon all voltagesoutputby thehot-wireanemometers.Also, a StanfordLock-In

Amplifier wasusedfor relativephasemeasurementsandasasecondamplitudemeasuring

devicefor theboundary-layerdisturbancesignal.

5.1. Preparation and Calibration

Before a series of tests, a number of preliminary tasks must be completed. First,

the hot-wire anemometer bridges must be balanced. Next, a square wave is input to the

anemometers, and response characteristics are optimized by adjusting capacitance and

inductance. An optimum response has as little overshoot and oscillation as possible.

During warm-up of the wind tunnel, hot-wire voltage change with temperature is

monitored for both wires. The slopes of the resulting lines, the "temperature coefificients,"

are used for the hot-wire calibration and in all data acquisition codes. These coefficients

remain accurate for a temperature increase in excess of 10 C. Hot-wires are calibrated

over the range of velocities expected for the experiment, in this case from 1 to 18 m/s.

The temperature at the first point is taken as the calibration temperature and all subsequent

calibration point voltages are adjusted using the temperature coefficients. In this manner, a

nearly constant tunnel temperature is not required for hot-wire calibration. A least-squares

fitting routine is used to fit a fourth-order polynomial to the calibration curve.
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For each data point taken in a spanwise traverse, the following quantities are measured:

temperature; boundary-layer relative phase; boundary-layer and freestream mean flow;

and, boundary-layer and freestream normalized streamwise fluctuations. In a boundary-

layer disturbance-profile run, boundary-layer streamwise fluctuation is filtered and ampli-

fled by both the Stanford Lock-In Amplifier and the Stewart Filter unit. This redundancy

provides a check for both pieces of equipment.

Temperature is measured by a thermistor. The DC voltage output is acquired at the

same time as the hot-wire anemometer DC voltage components. These three signals are

acquired differentially by the Masscomp's A/D board at a frequency of 500 Hz for 15 sec.

Nearly simultaneous sampling of the channels is provided by setting the Masscomp's burst

frequency to 500,000 Hz. The temperature voltage reading is converted to degrees C by a

calibration equation.

The AC components of the hot-wire anemometer outputs are sent to a Stewart Dual

Two Channel Filter for filtering and amplification. A two-hertz filtering window is created

by low-passing at 117 Hz and high-passing at 115 Hz. The Stewart unit may be remotely

controlled and the boundary-layer disturbance-profile code uses a routine to adjust the

signal amplification appropriately throughout the boundary layer. This is necessary due to

large changes in boundary-layer AC signal amplitude in these runs. Typical amplification

ranges from 50 to 70 riB. The conditioned signals are acquired at 1000 Hz for 20 sec.



36

Onceacquired,theDC hot-wiresignal componentsareconvertedto mean-flowve-

locities usingthe calibrationcurves. AC rms voltagesareaddedandsubtractedfrom

theappropriateDC voltagesandpassedthroughthecalibrationcurvesto obtainvelocity

fluctuationsaboutthemean-flowvelocityfor bothchannels.Finally,beforerecorded,the

fluctuationvelocitiesarenormalizedby U_.

Boundary-layer phase relative to the freestream ac signal phase is measured by the

Stanford Lock-In Amplifier. At the beginning of the run, the freestream anemometer

output is sent to the Stanford input. The Stanford unit is operated in the "R,/_" mode.

Depressing the relative ¢_button forces future output to read relative to the current input.

The freestream signal is removed and the boundary-layer signal connected for the run.

The Stanford Amplifier outputs DC voltages corresponding to AC signal magnitude and

phase. The raw outputs are +10 V. Since the Masscomp A/D board supports only _5 V

or 0 to 10 V, a voltage reducing device was built to halve the maximum Stanford output.

These signals are acquired at 500 Hz for 15 sec. The boundary-layer fluctuation velocity

measured in this way serves as a check against the Stewart filters.

5.3. Codes

The following is a list and short description of all codes used in this experiment.

TCOMP: During wind tunnel warm-up, this routine measures the change in both hot-

wire channel voltages with change in temperature. The output, a temperature coefficient

for each channel, is used in the hot-wire calibration program and in all software which

acquires hot-wire DC voltages.



37

CALHW2: This temperature-compensatedprogramcalibratesbothhot-wirechannels

usingdynamicpressuremeasuredby a pitot probe. The calibrationtemperatureis tbe

temperatureat the first point of calibration. Successiveraw voltagesare temperature

compensatedbeforebeingrecorded.

BL: Therearetwoversionsof thisprogram,BL.REGandBL.STEP.BL.REGmeasures

meanflow andfluctuationvelocityprofiles.BL.STEPis theversionwhichreadsits y step

sizes from an input file rather than calculating step size from the current U. BL.REG is

used for a profile with the roughness element, and the without-roughness profile is taken

with BL.STEP. At each data point, a boundary-layer relative phase and signal magnitude

are measured by the Stanford Lock-In Amplifier. BL records y step values, but not absolute

y position. This is computed by BLAS.

BLAS: Given the BL output file and the run temperature and pressure, BLAS extrapo-

lates the absolute position of the plate surface using the Blasius boundary-layer profile. A

straight line is fit through a user-specified set of points close to the surface. BLAS output

includes the surface position, Blasius profile slope near the the surface, virtual leading

edge, displacement thickness, _', momentum thickness, 8, and shape factor, H.

TSPROFILE3: A series of with-roughness and without-roughness boundary-layer

disturbance profiles measured by BL are subtracted in the complex plane. The output is a

series of T-S profiles due to the effect of the applied roughness only.

SCANZ: Data are acquired over a spanwise traverse of the boundary-layer at user-

specified increments. Constant user-specified U is maintained within ±0.005 by adjusting
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hot-wirepositionin V. Boundary-layer disturbance phase is recorded in addition to mean-

flow and fluctuation velocities. Actual position in V is calculated from BLAS output

parameters and recorded.

TSSCANZ: Data from a series of with-roughness and without-roughness spanwise

boundary-layer traverses taken by SCANZ are subtracted in the complex plane. The

output is a series of T-S amplitudes and phases over the spanwise traverses.

Note: The following are codes used in the development of the final roughness-signal

discrimination technique. These were not used for the results presented in Chapter VI.

SCAN'X: Data are acquired over a streamwise traverse of the boundary-layer at user-

specified increments. Constant user-specified U is maintained by adjusting hot-wire po-

sition in V according to the Blasius boundary layer. Boundary-layer disturbance phase

is recorded in addition to mean flow and fluctuation velocities. Actual position in V is

calculated from BLAS output parameters and recorded.

ACOUDIST: Data from a single SCANX run are analyzed to separate the long- and

short-wavelength components. Output is the magnitude and phase of the long-wavelength

component.

ACVECT: A series of boundary-layer disturbance profiles are taken with BL.STEP

in the streamwise direction. At cach V position in the boundary layer, the long- and

short-wavelength signal components arc separated, as in ACOUDIST. The output is a

long-wavelength signal profile.
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TSPROFILE2: ACVECT output, a long-wavelength signal profile, is subtracted in the

complex plane from each of a series of disturbance boundary-layer profiles.



CHAPTER VI

RESULTS

An important aspect of this research has been the ability to overcome the problems

associated with measuring exceptionally small signal amplitudes. Extreme care was taken

with all measurements. Without the signal subtraction technique used, the portion of the

streamwise fluctuation-velocity signal due only to the applied 3-D roughness element is

barely visible above the background signal. By measuring the magnitude and phase of

each position in the boundary layer both with and without the roughness element, it was

possible to subtract the signals leaving only the effect of the 3-D inhomogeneity.

However, due to the sensitivity of the experiments, many factors may still affect the

measurements. Any misalignment in position between the measurement locations of the

with and without roughness data points would be a source of error in the subtracted signal.

Also, changes in testing conditions over the time frame between the measurement of the

two signals could affect the resulting signal. Every effort was made to minimize error

from these sources. However, simply due to the errors associated with subtracting small

signals, there is considerable scatter apparent in the data. The results should be viewed in

a more qualitative than quantitative sense.

6.1. 3-D Roughness at Branch I

Initially the 3-D roughness element is placed at Branch I of the neutral stability curve.

All measurements with the roughness element in this position are taken at Uoo = 15 m/s,

F = 55 x 10 -6, and a freestream disturbance SPL = 93 dB.



41

6.1.1. Spanwise and Streamwise Variation of u'

Figures 6.1 through 6.4 map the streamwise velocity-fluctuation amplitude and relative

phase in the z-z plane at a constant U(y). This value is chosen to be near the position

of maximum disturbance signal amplitude in the y direction. Figures 6.1 and 6.2 show

a series of five runs, with each run corresponding to a different streamwise position, z.

(z and z are measured from the roughness center and scaled by D.i The series shows

D/2 increases in streamwise position ranging from D to 3D downstream of the roughness

element. Figures 6.3 and 6.4 give a series of three runs at streamwise locations of3D, 6D,

and 12D. The span of the runs extends over 2D in the z direction.

Figures 6.2 and 6.4 give relative phase values for the data. The apparent jumps in

the plots often correspond to phase "wrap-around" from -_- to +r. More interesting

information is obtained from the disturbance-velocity amplitudes given in Figures 6.1 and

6.3.

In Figure 6.1, particularly on the run D downstream of the roughness center, some

points in the -z-direction have unexplainably high amplitudes. Neglecting these, there

is no measurable effect of the 3-D roughness element this close to it. Beginning at the

3D/2 run and extending downstream, the effect of the roughness element may be seen.

There is growth of the signal amplitude, but it is difficult to determine the angle at which

the disturbance field expands in the spanwise direction. In the streamwise direction, there

appears to be an increase of the disturbance amplitudes, followed by a slight decay at the
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5D/2 location, and subsequent continued growth. This characteristic is predicted in the

near-disturbance-field computations by Tadjfar (1990) and will be discussed in Section 6.3.

Note that Figures 6.3 and 6.4 are an extension in the streamwise direction of Figures 6.1

and 6.2. The 3D run from the previous figures is included, as well as runs at 6D and 12D.

By 6D downstream of the roughness center, it is expected that the predicted heart-shaped

disturbance-wedge characteristic would be apparent in the signal amplitudes. From this run,

there is no evidence of the predicted behavior. Farther downstream at 12D, the run does not

extend far enough in the spanwise direction to detect any lobed characteristics. However,

there also does not appear to be significant u' growth on the roughness element centerline,

as would be expected if there was no heart-shaped disturbance field development.

6.1.2. Spanwise and Normal Variation of u'

Fimu-es 6.5 through 6.8 display spanwise variation of the boundary-layer disturbance

profiles. Again, Figures 6.5 and 6.7 give u' amplitudes and Figures 6.6 and 6.8 give relative

signal phases. The runs shown in these figures are taken at a streamwise position 2.5D

from the roughness center. Note that in some of the runs there are irregular data points

near the surface of the flat plate. This is most likely due to very slight misalignments in the

with and without roughness data-point positions. The distance between the individual data

points becomes increasingly small during the run as the hot-wire approaches the flat-plate

surface, with final poinzs separated by 25 #m. A very small misalignment between runs

would cause significant error in this region. In addition, this is the region in which the

smallest signals are being subtracted, which could also contribute to error.
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Figures6.5 and6.6includefiveruns,rangingfrom spanwiselocationsof -D to +D

by D/2. At this streamwise position, the range of the influence of the 3-D roughness

element does not appear to extend beyond D on either side of the centerline of the element.

The run taken on the roughness centerline has a characteristic 3-D T-S disturbance profile.

Figures 6.7 and 6.8 include a series of six disturbance profiles, ranging from 0 to -2.5D

in the spanwise direction. The data in this set becomes less reliable as distance in the

spanwise direction increases. It is included more for completeness than argument.

6.2. 3-D Roughness Downstream of Branch I

Due to the exceptionally small signal amplitudes encountered during these experiments

and the significant scatter in the data, two changes were made to increase signal amplitudes.

The first was moving the roughness element 12D downstream of Branch I (but still well

upstream of Branch II) and the second was increasing freestream forcing levels. Each set

of runs presented in this section was taken with Uoo and F unchanged, and with freestream

forcing at two levels, SPL1 = 93 dB and SPL2 = 95 dB. To avoid nonlinear freestream

forcing, larger acoustic sound pressure levels were not used. These two modifications to

the experiment parameters did increase signal amplitudes, but only slightly.

6.2.1. Spanwise and Streamwise Variation of u'

Figures 6.9 through 6.12 display streamwise and spanwise variation of disturbance-

velocity amplitude and relative phase at a constant U(y), chosen to correspond to a y-

position near maximum u'. Freestream forcing in Figures 6.9 and 6.10 is 93 dB, while the
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sound-pressure-levelin Figures6.11and6.12is95dB. Runsaretakenatthe 1.5D,2.5D,

and3.5D streamwisestationsand extendapproximately2D in the spanwisedirection.

Bothamplitudeandrelativephasemeasurementsarepresented.

Figures6.9 and6.11arequalitativelysimilar. The 1.5D station run displays only a

verb, slight effect of the roughness element. Signal amplitudes have grown significantly

by 2.5D downstream of the roughness element, and there is a slight decrease in signal

amplitude in the 3.5D run. This is the characteristic of the near-field fluctuation-velocity

amplitude predicted by Tadjfar's (1990) numerical modelling. (See Section 6.3.) The data

are still not clear enough to determine the angle of spanwise spreading of the disturbance

field.

6.2.2. Spanwise and Norrnal Variation of u'

Figx_res 6.13 through 6.16 display two sets of six boundary-layer disturbance profiles

taken with freestream SPL of 93 d.B and 95 dB. Each series of profiles extends over a

range of spanwise locations from the roughness centerline to -2.5D in the z-direction. All

data in these figures are taken at a constant streamwise position located 2.5D downstream

of the roughness center. Figures 6.13 and 6.15 are fluctuation velocities, and Figures 6.14

and 6.16 are relative phase measurements.

With the exception of a few data points close to the surface of the flat plate, the

disturbance-velocity profiles taken at the zero spanwise location closely resemble 3-D T-S

waves. This discrepancy at the surface is most likely due to very small misalignments in

position, which can produce large errors in this region. The fluctuation-velocity amplitudes



45

decrease in the spanwise direction until there is essentially no effect of the roughness at

the -2.5D spanwise location. While these general trends hold for both Figures 6.13 and

6.15, the shapes of the individual profiles, particularly in the -0.5D to -2D region, do

not match between the two series of runs. It is difficult to determine what is happening in

this region, again due to small signal amplitudes and scatter in the data.

6.3. Comparison with Numerical Model

It is interesting to qualitatively compare the results of these experiments and data from

the numerical model by Tadjfar (1990). Tadjfar presents contour maps of fluctuation-

velocity amplitudes for nondimensional frequency So of 2.0 and 3.0. Using (5) in Sec-

tion 2.2. to calculate So for the two roughness positions tested yields values of So,a = 4.1

and So,2 = 6.3. However, Tadjfar's computations are based on the high-Reynolds-number

limit, and these values must be adjusted to compensate for finite Reynolds numbers. For

the case of the roughness element at Branch I, the procedure is relatively straightforward,

giving an effective nondimensional frequency Fc:.t,1 = 25 x 10 -6. Translating to Tadj-

far's nondimensional frequency, S°,c.t.:,l = 1.9, which is close to the 2.0 case presented.

For the experimental case of the 3-D roughness downstream of Branch I, the procedure

necessary to compensate for finite Reynolds number is less straightforward. Noting the

effect of compensation on the Branch I case, assuming a S°,_::,2 of 3.0 for comparison is

a reasonable first-order estimate.

Tadjfar's results presented here are for a roughness height of Y_ = 1.0, where Y is the

lower-viscous-deck scaling variable given by (9) in Section 4.1. With the 3-D roughness
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elementatBranchI, theheightof theelementis Y_,1 = 1.8 and in the downstream position

the height is ]_,2 = 1.4. Again, these values are close enough to provide a qualitative

comparison between the numerical and experimental results.

For the 3-D roughness element at Branch I, Figures 6.1 and 6.3 map the disturbance

velocity amplitude in the x-z plane. The corresponding numerical mapping is given in

Figure 6.17. (Note that the x and z axes are scaled by D/2.) There is little agreement

between the two. Maximum disturbance amplitudes are predicted to occur at a streamwise

position D downstream of the roughness center, whereas in the experiments this station

corresponded to the smallest disturbance amplitudes measured. By the 6D downstream

position, the disturbance field has begun developing the heart-shaped characteristic in

the computations. There is no evidence of this behavior in the experiments. The only

similarity found between the two is the centerline increase and subsequent decrease of

fluctuation-velocity amplitude, albeit on drastically different length-scales.

Computational mapping of the x-y plane at z = 0 for the roughness element at

Branch I is given in Figure 6.18. The y axis is scaled by the roughness height, Y_. The

corresponding experimental mapping is the zero-span disturbance-profile from Figures 6.5

and 6.7. From the experimental data, the altitude of maximum disturbance-velocity in the

profile is r/ ,_ 1.3, or y" _ 0.93 mm. At the 2.5D streamwise position in Figure 6.18, the

height of maximum u' is Y ,_ 4.0, or 0.96 mm. Agreement between the computations and

experiment is quite good here.
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Similarcomparisonscanbemadebetweenthedownstream-roughness-positionexper-

imentsandtheSo = 3.0 computations. The streamwise stations 3, 5, and 7 in Figure 6.19

correspond to the 3D/2, 5D/2, and 7D/2 runs in Figures 6.9 and 6.11. Here the experi-

mental trend of initially increasing and then decreasing centerline u' amplitudes is depicted

in the numerical results on the correct length-scales. Looking at the x-y plane, Figures 6.13

and 6.15 show a maximum u' at _ _ 1.3, or y" _ 1.2 ram, on the roughness centerline. In

Figure 6.20, the maximum value is located at Y _ 4.2, or y. _ 1.0 mm. Again, there is

good a_eement between the major features of the experimental data and the computational

results.



CHAPTER VII

CONCLUSIONS

Theseexperimentsexaminethedisturbancevelocityfield downstreamof a 3-Drough-

nesselementin aBlasiusboundary-layerundertheinfluenceof freestreamacousticwaves.

Characteristicsof this disturbance-fieldhave beenpredictedby the asymptotic,high-

Reynolds-number,triple-decktheoryof ChoucthariandKerschen(1990)andby the nu-

mericalanalysisof Tadjfar(1990).Theobjectiveof theseexperimentsis to mapthe3-D

disturbancefield in orderto provideexperimentaldatain supportof theseanalysesandto

obtaingreaterinsightinto thedevelopmentof 3-DT-Sinstabilitywaves.

An importantaspectof this researchhasbeenthe ability to discriminatethe 3-D,

roughness-induced,T-Sportionof thefluctuation-velocitysignalmeasured.Experimental

u' amplitudes are on the order of 10 -4 and presumably contain components from leading-

edge T-S waves, surface roughness T-S waves, instrumentation sting vibrations, and the

Stokes layer, in addition to the desired 3-D roughness-induced T-S signal.. In order

to discriminate the 3-D roughness-induced T-S amplitude, data are taken both with the

roughness element in position and with it removed from the flat-plate model. Signal

amplitudes and phases are measured and subtracted in the complex plane, leaving only the

3-D T-S magnitude and phase.

Data are presented to show the streamwise and spanwise variation of u' at a constant

U(g) and the spanwise and normal variation of u' at a constant streamwise position.

The 3-D roughness element is placed at two streamwise positions, Branch I and 12D
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downstream of Branch I. In this manner, the growth of the disturbance-field wedge pattern

downstream of the roughness is documented in the streamwise and spanwise directions.

Most measurements focus on the near-field region immediately downstream of the

3-D roughness element. The evolution of the 3-D T-S waves is documented, and it is

likely that the disturbance field at these streamwise positions has not fully developed. The

"heart-shaped" disturbance-wedge predicted by Choudhari and Kersch.en's 3-D T-S theor 3,

is not observed. However, some near-field characteristics of Tadjfar's numerical model

are found, particularly for the case of the roughness element downstream of Branch I.

Future investigations into the effect of a 3-D roughness element should extend the mea-

surement regime farther downstream to determine if the heart-shaped disturbance field

does eventually develop.
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FACILITY



A.1. Wind Tunnel
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The ASU Unsteady Wind Tunnel is a low-speed, low-turbulence, closed-return wind

tunnel. Originally located at the National Bureau of Standards in Gaithersburg, Maryland,

the wind tunnel was designed by Dr. Philip Klebanoff. After being moved to ASU in 1984,

the facility was reconstructed and became operational in 1987. Two unique aspects of the

wind tunnel are the unsteady operational mode (not used in this experiment) and extremely

low turbulence levels.

The wind tunnel test section is 1.4 m square and 5 m long. Drawings of the facility are

Nven in Figure 3.1. Maximum freestream speed is 36 m/s, provided by a 150 hp variable-

speed DC motor. The fan diameter is 1.8 m, with 9 blades and 11 stators. Both the fan

motor and the test section are secured to 0.3-m-thick concrete slabs isolated from the rest

of the building by a damping material. The contraction cone is a symmetric, fifth-order

polynomial curve structure with an area ratio of 5.3 to 1.

All aspects of construction of the ASU Unsteady Wind Tunnel have been tailored

toward reducing mean flow turbulence levels. The flow passes through a 76-ram section

of aluminum honeycomb after the last turn before the contraction cone. Downstream of

the honeycomb, a series of seven stainless steel screens further reduce turbulence before

the flow enters the settling chamber and contraction cone. The screens are 2.7 m by 3.7 m

(9' by 12') with an open air ratio of 0.65. The last two are seamless. All seven screens

were removed, cleaned, and replaced in the summer of 1991, just prior to the beginning of

these experiments. See Table 1 for mean flow turbulence levels.
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Table1: FreestreamTurbulenceLevels

0.1Hz-1 kHz Bandpass 2 Hz-1 kHz Bandpass

Uo_ (m/s)

5

10

15

Streamwise

Fluctuations

0.069%

0.088%

Transverse

Fluctuations

0.018%

0.016% t

Uo_ (m/s)

10

Streamwise

Fluctuations

14'1
0.018%

0.030%

Transverse

Fluctuations

Iv'[

0.007%

0.014%

0.085% 0.018% 15 0.038% 0.014%

25 0.067% 0.032% 25 I 0.092% . f 0.035%

30 0.054% 0.026% 30 [ 0.095% _ 0.040%

A.2. Flat-Plate Model

The flat-plate model used for this experiment has a span of 1.4 m, a chord of 3.7 m,

and is 21 mm thick. It is made of two 6061-T6 aluminum sheets sandwiching 19-mm

paper honeycomb. The leading edge is an ellipse with aspect ratio 67:1 and a major axis of

0.34 m. The juncture between the leading edge and the plate is filled with bondo and has

been wet-sanded and polished to minimize any discontinuities in the surface. The surface

of the flat plate is also polished to a near-mirror finish.

The fiat plate is mounted in the test section with a series of 10 brackets. These

brackets provide fine adjustment of the model at several streamwise locations to ensure

a zero-pressure gradient condition on the model. The pressure gradient is verified by

taking mean-flow boundary-layer profiles and matching the shape factor with 2.59. Also,

a trailing edge flap, 0.35 m long, is set at an angle of 4.5 ° to ensure that the attachment

point is not on the testing side of the model.
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Table 2: Traverse Specifications

[l z(chord) y(normal) z(span)

Total Travel 1.25 m 100 mm [ 180 mm

Minimum Step 240/zm 12 #m 100/_m

Three-Dimensional Traverse

57

A three-dimensional traversing system is used to map the disturbance field created by

the applied roughness element. The traversing system is located outside the tunnel and is

powered by three Slo-Syn stepper motors and their respective controllers. Voltage pulses

are sent from the Concurrent (Masscomp) 5600, 8 channel, 500 kI--/z D/A board to the

controllers, and the controllers return an actual distance moved after each step. During

a testing run, all traverse movement is controlled and monitored by the data acquisition

codes.

In the z-direction, the stepper motor is geared to a drive train moving a carriage which is

supported by two Thompson rails. The instrumentation sting, a 45* forward-swept carbon-

carbon composite arm, pushes open and pulls closed a horizonta.l zipper in a plexiglass

window. In the z-direction, the stepper motor is geared to two precision lead screws. The

plexiglass window slides in the z-direction and is moved by the instrumentation sting. A

single precision lead screw is turned by the y stepper motor, moving the sting through the

boundary layer. The total ranges of motion and minimum step sizes are listed in Table 2.
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as defined by

Triple-Deck Theory

16 mm

25 mm

Figure 2.3: 3-D roughness element.
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Figure 4.1: Amplitudes of acoustic and noise signals: freestream hot-wire.
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lm
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Background Signal (without 3-D roughness element)

Total Signal (with 3-D roughness element)

3-D Roughness T-S Signal

Figure 4.4: Complex plane signal subtraction technique.
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